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ABSTRACT 

Large area metal-oxide-silicon (MOS) capac i tors  have been f ab r i ca t ed  
and evaluated e l e c t r i c a l l y  and environmentally f o r  use as micrometeoroid 
counters i n  space. The conclusion is  t h a t  the  present  technology is 
capable of bui lding capac i tors  t h a t  are s u i t a b l e  f o r  performing t h i s  function. 
Capacitors have been fabr ica ted  with d i e l e c t r i c  thicknesses from 

2000 A - 10,000 A. 

excess of 10 
+3OO0C without adverse e f f e c t s .  

0 0 

These capaci tors  can be e l e c t r i c a l l y  s t r e s s e d  i n  
6 V/cm and have been t e s t ed  i n  a i r  and vacuum a t  -150OC t o  
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CHARACTERIZATION OF SILICON OXIDE FOR A CAPACITANCE-TYPE 

METEOROID PENETRATION DETECTOR 

* ** 
By K. S .  Canady, L. K. Monteith, 

and R. P. Donovan 

SECTION I 

INTRODUCTION 

A capacitor-type micrometeoroid de t ec to r  operat ing as a cumulative 
counter of p a r t i c l e s  a micron o r  l a r g e r  i n  diameter r equ i r e s  a d i e l e c t r i c  
with a thickness on the  order  of a micron. The mass of t h e  p a r t i c l e  
of interest w i l l  determine t h e  a c t u a l  thickness  of t h e  capac i to r  d i e l e c t r i c  
and the  f r o n t  t h i n  f i l m  e l ec t rode  t o  be penetrated.  
capac i to r  discharge during impact are no t  p re sen t ly  known. 
complete pene t r a t ion  of t h e  d i e l e c t r i c  region is general ly  accepted as 
necessary f o r  r e l i a b l e  operation. 
of a de t ec to r  where complete pene t r a t ion  is  the  order  of a micron requires  
high q u a l i t y  t h i n  f i lms of an i n s u l a t o r  and m e t a l  where t h e  thickness  of 
each can b e  e a s i l y  var ied.  

The d e t a i l s  of 
However, 

To accomplish t h e  design and t e s t i n g  

Although t h e  mechanism f o r  capaci tor  discharge i s  not  completely 
understood, t h e r e  are c e r t a i n  des i r ab le  electrical  c h a r a c t e r i s t i c s  of 
t he  capac i to r  s t r u c t u r e  which can be i d e n t i f i e d .  
t i o n  is  the  a b i l i t y  of t h e  de t ec to r  t o  withstand appl ied electric f i e l d s  on 

t h e  order  of 10 V / c m  i n  severe environments. Upon penetrat ion,  a po r t ion  
o r  a l l  of t he  energy s t o r e d  by the  capac i to r  is  d i s s ipa t ed  through the  
impact region. For successful  operation, t h e  energy d i s s i p a t i o n  should 
clear the  l o w  impedance and r e s t o r e  t h e  a b i l i t y  of t h e  de t ec to r  t o  with- 
s tand t h e  appl ied f i e l d .  
of temperature, pressure,  and v ib ra t ion ,  a s t a b l e  capac i to r  with respect  
t o  electrical performance is  desirable .  
cu r ren t s ,  capacitance,  o r  f i e l d  s t r eng th  only compound t h e  design problem 
f o r  achieving a f l i g h t  q u a l i f i e d  detector .  
contract  t o  study and cha rac t e r i ze  s i l i c o n  oxide as a t h i n  f i l m  d i e l e c t r i c  
material s u i t a b l e  f o r  de t ec t ing  low mass micrometeoroids i n  space. 
p a r t  of a program t o  design and test a capacitor-type s t r u c t u r e ,  t h i n  f i l m  
capaci tors  have been f ab r i ca t ed  using metal-oxide-silicon (MOS) technology. 

The essence of opera- 

6 

To achieve t h i s  operat ion i n  severe environments 

Excessive changes i n  leakage 

It i s  the  purpose of t h i s  

A s  

* 
Present address: Duke Power, Charlot te ,  N. C. 

** 
Associate Professor  of Electrical Engineering, North Carolina S t a t e  

University,  Raleigh, N. C. (Consultant a t  Research Triangle  I n s t i t u t e ) .  



The MOS technology w a s  chosen because (1) high q u a l i t y  in su la t ing  f i l m s  

of S i 0 2  can be grown thermally with a thickness  from 2000 t o  10,000 A, 

(2) aluminum meta l iza t ion  can rout ine ly  be accomplished i n  the  same 

thickness range and (3) f i e l d  s t r eng ths  as high as 10 V / c m  have been 
reported f o r  Si02. 

a t h i n  f i l m  capac i tor  type de tec to r  with one important exception. 

micrometeoroid de tec tor  of i n t e r e s t  requi res  a capac i tor  area of 10 

while MOS devices requi re  areas on t h e  order of 10 
a primary objec t ive  f o r  t he  e f f o r t  under t h i s  cont rac t  w a s  t o  ob ta in  
l a rge  area MOS s t r u c t u r e s  and charac te r ize  them as capaci tors .  The 
methods of f ab r i ca t ion  and t y p i c a l  r e s u l t s  of t h e  electrical tests are 
included i n  t h i s  repor t .  
as they relate t o  t h e  design of a t h i n  f i l m  capacitor-type de tec tor .  

0 

7 

The MOS technology appears t o  provide the  necessary a t t r i b u t e s  f o r  
The 
3 2  c m  

cm . A s  a r e s u l t ,  -3 2 

Also included i s  an assessment of these  r e s u l t s  

A s  a p a r a l l e l  e f f o r t  t o  t he  inves t iga t ion  of MOS s t ruc tu res ,  o ther  
methods f o r  achieving t h i n  f i l m  capaci tors  have been reviewed. The re- 
view is included as an appendix t o  t h i s  repor t .  The primary considerat ions 
have been the  d e t a i l s  of t h e  technology, proper t ies  of r e su l t i ng  f i lms and 
state-of-the-art  i n  obtaining l a rge  area f i lms less than a micron i n  
thickness.  Special  a t t e n t i o n  is  given t o  pinhole f r e e  f i lms in t h i s  
thickness range. 
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SECTION I1 

FABRICATION OF MOS CAPACITORS 

The s u b s t r a t e  material i n  a l l  cases was p-type s i l i c o n  approximately 
0.005 ohm-cm. 
va r i a t ions  with appl ied voltage.  
f o r  f i e l d  e f f e c t  t r a n s i s t o r s  but  should be avoided i n  the  appl ica t ion  
under considerat ion here. Preparat ion of t he  s i l i c o n  wafer p r i o r  t o  thermal 
oxidat ion i s  of utmost importance i n  determining the  e l e c t r i c a l  p rope r t i e s  
of t h e  oxidized f i lms.  A d i r t y  sur face  on a microscopic level can nucleate  
c r y s t a l l i n e  regions i n  an otherwise amorphous f i lm.  A rough sur face  may 
cons t ra in  oxidat ion i n  c e r t a i n  regions and r e s u l t  i n  s u b s t a n t i a l  va r i a t ions  
i n  f i l m  thickness.  
pinholes o r  o ther  unwanted s t r u c t u r a l  defec ts  i n  the  oxidized f i lm.  

The low r e s i s t i v i t y  s i l i c o n  w a s  chosen t o  avoid capacitance 
This va r i ab le  capacitance i s  necessary 

Dust p a r t i c l e s  on the  sur face  may r e s u l t  i n  e i t h e r  

To bu i ld  a t h i n  f i l m  capacitor-type de tec tor  with a l a rge  area of 
s i l i c o n  oxidized t o  form approximately 1 / 2  micron of S i 0  

premium on preparat ion of the  s i l i c o n  sur face  p r i o r  t o  oxidation. 
one must a l s o  exerc ise  due caut ion t o  avoid degrading t h e  electrical 
c h a r a c t e r i s t i c s  of t he  S i 0  2 
oxidat ion.  I n  f a c t ,  each process s t e p  has been ca re fu l ly  considered f o r  
poss ib le  de le te r ious  e f f e c t s  on t h e  c h a r a c t e r i s t i c s  of t he  capaci tor .  A 
number of these  considerat ions are included i n  the  following discussion. 
The f ab r i ca t ion  procedures are out l ined  i n  Fig. 1. 

places  a 2 
However, 

l aye r  during the  processes required a f t e r  

Cleaning Procedure 

The cleaning procedures used t o  bu i ld  t h e  capac i tors  t e s t ed  i n  t h i s  
These were developed by a t r i a l  and e r r o r  program are l i s t e d  i n  Fig. 1. 

procedure s t a r t i n g  with the  commonly used procedures of s i l i c o n  technology 
(Ref. 18). The i n i t i a l  s t e p  is  to  c lean the wafer of a l l  fore ign  metals, 
abrasives  and o ther  contaminants. The procedures include heat ing i n  
s u l f u r i c  ac id ,  a water r i n s e  and a soak i n  hot  n i t r i c  acid.  
ac ids  are s t rong  oxidizing agents which should d isso lve  most organic 
greases and contaminants as w e l l  as dissolve many metal contaminants t h a t  
might be on the  surface.  Step G of procedure I (HF etch)  is t o  remove t h e  
na t ive  oxide l aye r  caused by e i t h e r  exposure t o  a i r  o r  t h e  s t rongly  oxidizing 
cleaning procedures of s t eps  A and C. With the  oxide removed, t he  wafer is  
copper p la ted  t o  encase any adhering p a r t i c l e s  of alumina abras ive  commonly 
used i n  the  mechanical pol ishing of t h e  s i l i c o n  surface.  
adhere tenaciously t o  the  s i l i c o n  sur face  but can be removed by a procedure 
such as copper p l a t ing  i n  which these  p a r t i c l e s  are ac tua l ly  encased i n  
the  copper l aye r  t h a t  deposi ts  on t h e  s i l i c o n  and then removed i n  the  
subsequent n i t r i c  ac id  etch.  Step L,  the  hot  Transene r i n s e ,  has  been 
found t o  be an e f f e c t i v e  method of fu r the r  removing metal ions on t h e  
s i l i c o n  surface.  Steps A through M have proved t o  be a more des i r ab le  

Both these  

These p a r t i c l e s  

3 



I. Clean Wafers. 

A. Boi l  i n  H SO - 10 minutes. 2 4  
B. Rinse i n  D I  water. 
C. Boi l  i n  HN03 - 10 minutes. 

D. Rinse i n  D I  water. 
E. Boi l  i n  D I  water. 
F. Rinse i n  D I  water. 
G. Etch i n  HF - 1 minute. 
H. Rinse i n  D I  water. 
I. Copper p l a t e .  
J. Etch i n  HN03. 

K. Rinse i n  D I  water. 
L. Rinse i n  ho t  Transene. 
M. Blow Dry. 

* 

11. Oxidize 

Thickness 

Temperature 

Time:  Dry 

Wet 

Dry 

111. Etch Oxide from Back Side. 

A. Put N HF-HF (ammonium b i f luo r ide )  i n  p l a s t i c  beaker and moisten 

s l i g h t l y  with D I  water. 
B. Place N HF=HF c r y s t a l  on wafer and place one drop of water on 

c r y s t a l .  Crys t a l  should cover 1/4" diameter area minimum. Etch 
u n t i l  a l l  oxide removed from area under c r y s t a l .  

4 

4 

C. Rinse i n  D I  water. 
D. Rinse i n  hot  Transene. 
E. Blow dry.  

(Copper P la t ing  Solution: 1. 100 grams CuS04*5 H20 

2. Dissolve i n  D I  water 

3. Add 5 cc HF 

4 .  Add D I  water t o  make 500 ml.) 
* 

Transene is the  t rade  name of a versene marketed by Transene Corp. 

Figure 1, Procedures f o r  Fabricat ing MOS Capacitors 
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method of sur face  preparat ion than o the r  chemical cleaning s t e p s  which 
are s u b s t a n t i a l l y  similar t o  i t  but  omit t he  copper p l a t ing .  
of oxide defec ts  p e r  u n i t  area i s  reduced by following t h i s  procedure. 

The number 

Oxidation 

The oxidat ions w e r e  ca r r i ed  out  i n  a d i f fus ion  furnace a t  l l O O o  
The oxides w e r e  grown by 5-minute dry (a  few rare cases at 1 2 O O 0 C ) .  

oxygen--x-minute steam--5-minute dry oxygen process.  
determined by the  des i red  oxide thickness .  
t o t a l l y  i n  dry oxygen, usua l ly  a t  1200OC; these,  however, had lower break- 

down f i e l d  s t r eng ths  than the  steam oxides: 

4 X lo6  V/cm. The oxidizing spec ies  i n  steam oxidat ion i s  water which 
reacts with s i l i c o n  t o  form SiO, and H, (Ref. 18). I n  dry oxygen, t he  

The steam t i m e  is  
Some few oxides were grown 

6 2 x 10 V / c m  compared t o  

L L 

oxidizing r eac t ion  is simply t h e  combination 
form Si02. 

Oxide Removal 

The oxidat ion process grows an oxide on 
f r o n t  of t h e  wafer. Since t h e  s i l i c o n  wafer 

of s i l i c o n  and oxygen t o  

the  back as w e l l  as t h e  
i s  t h e  back contact  t o  the  

capaci tor ,  i t  is necessary t o  remove enough oxide from the  back t o  make 
contact t o  the  s i l i c o n .  I n i t i a l l y ,  t h i s  w a s  accomplished by covering 
the  f r o n t  oxide with black wax, then dipping t h e  wafer i n  hydrofluoric  
ac id  t o  e tch  the  oxide from the  back. 
disadvantages: 
f r o n t  of t he  wafer, and (2)  t he  wax i t s e l f  is  a fore ign  substance on the  
d i e l e c t r i c  and may introduce undesirable  e f f e c t s .  

This procedure suf fered  from two 
(1) t he  a c i d  could sometimes penet ra te  t he  wax on the  

The procedure l i s t e d  i n  Fig. 1, p a r t  111, el iminated these  undesirable  
e f f e c t s .  Ammonium b i f l u o r i d e  i n  water creates f l u o r i d e  ions i n  an ac id  
so lu t ion .  The f l u o r i d e  ion  then etches t h e  s i l i c o n  dioxide i n  t h e  same 
manner as HF. The advantages of t h i s  process are: (1) a s m a l l  area of 
s i l i c o n  dioxide can be  etched away exposing the  s i l i c o n  which can then 
be covered wi th  evaporated aluminum t o  have any des i r ab le  e lec t rode  area; 
(2) t he  only substance t h a t  touches the  d i e l e c t r i c  area is  high pu r i ty  
water and Transene. 

Evaporation 

Aluminum. - A l l  e lec t rodes  w e r e  made from evaporated aluminum. The 
aluminum w a s  evaporated i n  an o i l  d i f fus ion  system; the  vacuum chamber 

-5 w a s  pumped down t o  5 x 10 t o r r  before  evaporation. The source used w a s  
high pu r i ty  aluminum c l i p s  pressed i n t o  a tungsten f i lament .  Normally, 
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about 30 amps of f i lament  cur ren t  w a s  needed t o  evaporate;  the  evaporation 

rate w a s  approximately 40 A/sec. 
process t o  def ine  t h e  e lec t rode  areas. The s u b s t r a t e  w a s  unheated. 

0 

Masks were used during the  evaporation 

Holders 

The f i r s t  holder  b u i l t  f o r  t he  micrometeoroid de tec tor  u t i l i z e d  a 
technique whereby contact  w a s  made t o  the  e lec t rode  on top of t he  oxide by 
a one inch diameter m e t a l  ridged r ing .  This type of holder proved t o  be 
undesirable  from both an electrical and a mechanical viewpoint. Since the  
wafer is  held between two m e t a l  p a r t s  and the  pressure on it  determined by 
the  screws, some wafers w e r e  broken by exer t ing  too much pressure on the  
s i l i c o n .  Also, t h e  sur face  was frequent ly  scratched and abraded by the  
metal r ing  contact .  

The second generat ion holder  w a s  of t he  general  design of Figs.  2 
and 3 ( f o r  2" wafers) .  

The spr ing  w a s  used t o  provide a more constant  pressure on t h e  s i l i c o n  
wafer. A ho le  halfway through the  bottom p l a t e  a l igns  the  wafer. The top 
p l a t e  contacts  t he  wafer on t h e  oxide only and does not touch t h e  aluminum 
contact area. Contact t o  the  wafer i s  made through the  spr ing  on the  
bottom s i d e  and through a gold lead thermocompression bonded t o  the  top 
electrode.  
capaci tors  only and are not  designed t o  be f l i g h t  type mour,ts. 

These holders  were intended f o r  use i n  laboratory tests of t he  

Connections and Leads 

One of t h e  reasons a r ing  contact  w a s  not  u t i l i z e d  w a s  because of 
t h e  c lear ing  operat ion t o  be discussed i n  a later sec t ion .  
reason w a s  t h a t  t he  r ing  scratched the  aluminum contact.  
i n  Fig.  3 w a s  then used f o r  t h e  remainder of t h e  cont rac t .  
gold w i r e  bonded t o  the  aluminum e lec t rode  made contact  t o  t h e  top electrode.  
The top aluminum p l a t e  of Fig. 2 d id  not  touch the  evaporated aluminum 
e lec t rode  but  contacted the  oxide r ing  showing around the  aluminum electrode.  
Since the  top p l a t e  and bottom p l a t e  are a t  the  same electrical p o t e n t i a l ,  
no a r c  can occur under the  aluminum top p l a t e .  

A second 
The holder shown 

A 1 o r  2 m i l  

Contact t o  t h e  s i l i c o n  w a s  made by etching a hole  i n  t h e  oxide on t h e  
back of t h e  s i l i c o n  wafer and evaporating aluminum over t h e  e n t i r e  back 
surface.  When mounted i n  t h e  sample holder of Fig. 3,  the  s t a i n l e s s  steel 
spr ing  presses  aga ins t  t h e  evaporated aluminum t o  e s t a b l i s h  a l a rge  area 
pressure contact .  

6 



Figure 2. Assembled Capacitor Holder (without t h e  capaci tor)  
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I. Bottom P l a t e  
3/16" (Typ-2 P l a c e s )  I 

6- 32 

2 314" D 

6-32 Tapped 

2-56 Tapped (Typ-2 Holes) 

11 4" T 1 /8"  (Typ- 2 P l a c e s )  

S e c t i o n  A-A 

11. Standoff  
1/4" D 

------ * 
' 6-32 Tapped 

111. Washer e L: &6-32 Tapped 

3/16" M a x q L  1/16'' i 

Figure 3 .  Detail Sketches of Wire Bonded Capacitor Holder 

8 



I V .  Top P l a t e  

' 5 / 3 2  R (Typ-2 P l a c e s )  I 

S e c t i o n  A-A 

V. S p r i n g  

1/16" D 
Hole 

1 27/32"  Max-D 
1 3 / 4 "  M i n - D  

5 M i l s  T h i c k  

3 - M i n  8 

Figure 3 (continued) 
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SECTION 111 

ELECTRICAL TESTS OF MOS STRUCTURES 

A capacitor-type de tec to r  requi res  a r e l a t i v e l y  s t a b l e  capacitance 

The change i n  
capable of supporting a high f i e l d  s t r eng th  over t h e  range of tempera- 
t u re s  and pressures  encountered i n  a f l i g h t  appl ica t ion .  
d i s s ipa t ion  f a c t o r  and dc r e s i s t ance  become important only i f  they 
r e s u l t  i n  appreciable  power d i s s ipa t ion  from t h e  power supply which 

0 

biases  the  capaci tor .  

5000 A, 10,000 A--versus e lec t rode  thickness--300 A, 1000 A,  5000 A, 

10,000 A w e r e  fabr ica ted  and t e s t e d  t o  charac te r ize  these  electrical 
proper t ies  and t o  demonstrate t he  a b i l i t y  t o  f a b r i c a t e  t h i n  f i l m  capac i tor  
type de tec tors  with physical  p rope r t i e s  s u i t a b l e  f o r  impact t e s t i n g .  
r e s u l t s  of t he  electrical tests are discussed i n  the  following sec t ions .  

A 1 2  poin t  matr ix  of oxide thicknesses - 2000 A, 
0 0 0 0 0 

0 

The 

Capacitance, Diss ipa t ion  Factor,  dc Resistance 

The capacitance and d i s s ipa t ion  f a c t o r  w e r e  checked on samples 
0 0 

varying i n  oxide thickness  from 2000 A t o  10,000 A and e lec t rode  thickness 

of 300 A t o  10,000 A. It  w a s  observed t h a t  wi th in  the  accuracy of t h e  
tests the  capacitance general ly  d id  not change with temperature o r  with 
pressure.  An example is  t h e  da t a  i n  Table I. 

0 0 

The d i s s ipa t ion  f a c t o r  showed no d e f i n i t e  temperature r e l a t ionsh ip .  
A key f a c t o r  which inf luences t h i s  apparent random v a r i a t i o n  is the  in- 
a b i l i t y  t o  accura te ly  measure the  d i s s i p a t i o n  f a c t o r  t o  four  decimal 
places.  However, i n  some few cases, t h e  d i s s ipa t ion  f a c t o r  increased 
with temperature. Table I1 is an example of t y p i c a l  data.  

The dc r e s i s t ance ,  i f  low enough t o  be measured, general ly  
decreases with increasing temperature. Ordinar i ly ,  t h i s  decrease can 
only be seen a t  3OOOC i f  a t  a l l .  
behavior. 

Table I1 i s  an example of t h i s  

A s  a capaci tor  t h e  electrical c h a r a c t e r i s t i c s  of t he  MOS s t r u c t u r e  
are r a t h e r  i n s e n s i t i v e  t o  environmental changes representa t ive  of f l i g h t  
conditions.  
adequate f o r  obtaining these  data .  

Routine measurements on a capacitance br idge were considered 

Although da ta  are shown f o r  only one thickness  of Si02 and two 

aluminum e lec t rode  thicknesses,  a l l  the  samples t e s t ed  exhib i ted  similar 
behavior. The capacitance is  i n s e n s i t i v e  t o  environment. The diss ipa-  
t i o n  f a c t o r  and dc r e s i s t ance  e x h i b i t  measurable changes a t  temperatures 
approaching 300OC. A s  a r e s u l t  of these  tests, it is apparent t h a t  t he  
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Table I 

Sample 4-23-68A 

Capacitance a t  Various Temperatures 

and Pressures  f o r  MOS S t ruc tu re  

Capacitance 

.0235pF 

.0234pF 

.0236pF 

.0236uF 

. 0 236pF 

.0236pF 

.0236pF 

.0236pF 

.0235pF 

0 

10,000 A Si02 (Steam Oxide) 

300 A A 1  
0 

Temperature 

-150°C 

-150 

-100 

23OC 

23OC 

100°C 

100 O c 
300°C 

300°C 

Pressure  

160p 

1 a t m  

16011 
1 a t m  

150p 

1 a t m  

9Q 

9 O V  
1 a t m  
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Table I1 

Capacitance, Diss ipa t ion  Factor  and dc  Resis tance 

of MOS S t ruc tu re  a t  Various Temperatures and Pressures  

0 

Sample 4-30-68B 10,000 A S i 0 2  (Steam) 
0 

1000 A A1 

Diss ipa t ion  dc 
Capacitance Factor  Resistance Temperature 

.0213pF .002 5 x lo9  ohms -150°C 

,0213 .002 5 lo9 -15OOC 

.0213 ,002 5 lo9 -1OOOC 

- 1 O O O C  

2 3 O C  

23OC 

9 
9 

9 

.0213 ,002 5 x 10 

.0212 .002 5 x 10 

.0212 .002 5 x 10 

l0O0C 
3OO0C 

9 

7 
,0213 .01 5 x 10 

.0216 .02 1 . 2  x 10 

3OO0C 7 .0213 .02 1.6 x 10 

Pressure  

1 a t m  

50011 

1 a t m  

50011 

50011 

1 a t m  

50011 

1 a t m  

500l.1 

12 



0 

MOS s t r u c t u r e  can be fabr ica ted  with Si02 thicknesses  from 2000 A t o  

10,000 A and aluminum e lec t rode  thicknesses from 300 A t o  10,000 A 
and behave as a s t a b l e  capac i tor  under environmental changes repre- 
s e n t a t i v e  of f l i g h t  conditions.  

0 0 0 

Fie ld  Strength of MOS Struc ture  

To f u l l y  charac te r ize  t h e  MOS s t r u c t u r e  as a capac i tor  type de tec to r ,  
t h e  f i e l d  s t r eng th  o r  breakdown vol tage  of t he  capac i tor  must be 
determined. Idea l ly ,  one would p r e f e r  a c l e a r l y  i d e n t i f i a b l e  bulk break- 
down f o r  t h e  Si0 f i lm.  This i s  r a r e l y  r ea l i zed  f o r  l a r g e  area capac i tor  

s t ruc tu res .  Pinholes and thickness  v a r i a t i o n s  f o r  t h i n  f i lms  ( l e s s  than 
1 micron) r e s u l t  i n  less than i d e a l  homogeneous in su la t ing  l aye r s  and 
f i e l d  s t r eng ths  less than t r u e  bulk breakdown are usua l ly  observed. 
Therefore, the  emphasis i n  obtaining a t h i n  f i lm  capac i tor  must be 
placed upon minimizing the  pinholes and s t r u c t u r a l  defec ts .  Varying 
the  growth k i n e t i c s  of t he  thermal oxidat ion and su r face  preparat ion of 
t h e  s i l i c o n  wafer are two ways of inf luencing t h e  s t r u c t u r e  of t h e  
oxidized layer .  During t h i s  cont rac t ,  t he re  w a s  no systematic  attempt 
t o  minimize the  pinholes and s t r u c t u r a l  defec ts  and thereby maximize the  
f i e l d  s t rength .  The primary concern w a s  t o  i d e n t i f y  t h e  state-of-the-art  
i n  NOS technology as appl ied t o  a capacitor-type de tec tor .  

2 

I n  t h e  str ictest  sense of t h e  word, breakdown f o r  an i n s u l a t o r  i s  
usua l ly  defined as an i r r e v e r s i b l e  process. However, f o r  a capacitor-type 
de tec tor ,  t h i s  d e f i n i t i o n  may not  be adequate. For example, t h e  i r regu-  
lari t ies i n  t h i n  f i lms  o f t en  burn-out as the  f i e l d  s t r eng th  of the  
loca l ized  region is  exceeded. The mechanism i s  q u i t e  analogous t o  
capaci tor  discharge upon p a r t i c l e  impact. Af te r  t h e  defec t  is cleared 
the  capac i tor  w i l l  usua l ly  s u s t a i n  a higher  f i e l d  s t rength .  
f o r  t he  purposes of t h i s  cont rac t ,  both the  arcing p o t e n t i a l  and destruc- 
t i v e  breakdown f i e l d  were considered. 

Therefore,  

Extensive e f f o r t s  w e r e  made t o  obta in  breakdown vol tage  versus 
temperature. A method w a s  found t o  determine breakdown vol tage  i n  the  
absence of a rc ing  o r  t r a n s i e n t  breakdown. 
analyzing the  current-voltage c h a r a c t e r i s t i c s  where e l ec t rode  i n j e c t i o n  
is suspected as the  supply of cu r ren t  carriers. A p l o t  of log  cur ren t  
versus vol tage o r  square root  of vol tage should be near  l i n e a r  a t  moderate 
vol tages .  A sharp upturn i n  cur ren t  i nd ica t e s  a threshold f o r  des t ruc t ive  
breakdown. Figures 4 and 5 are an example of t h i s  behavior. When the  
cur ren t  carriers are suppl ied by e lec t rode  in j ec t ion ,  t he  cur ren t  should 
increase  with increasing temperature a t  a given vol tage.  
an example of t h i s  behavior. 

The method consis ted of 

Figure 6 is  

The temperature dependence d id  not  always behave i n  a p red ic t ab le  
fashion. Often the  cur ren t  w a s  noted t o  be r a t h e r  i n s e n s i t i v e  t o  tem-  
pera ture  and t h e  threshold f o r  breakdown w a s  not c l e a r l y  defined. Likely 
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suspects  f o r  t h i s  behavior are po la r i za t ion  e f f e c t s  near  t he  e lec t rodes  
i n  bulk S i 0  

but  on o ther  environmental f a c t o r s  as w e l l .  These e f f e c t s  should be 
more ca re fu l ly  considered before  d e f i n i t i v e  remarks concerning bulk 
f i e l d  s t r eng th  of l a r g e  area S i 0 2  capaci tors  can be made. 

p o t e n t i a l  and t h e  a b i l i t y  t o  clear the  capaci tors  t o  f i e l d  s t r eng ths  i n  

excess of 10 V/cm. Freshly prepared samples could nominally withstand 

appl ied f i e l d s  near  lo5 V/cm. 
vol tage as temperature i s  var ied.  These da t a  are d i f f i c u l t  t o  analyze 
due t o  the  f a c t  t h a t  once a capaci tor  has been c leared  of defec ts  a t  a 
given f i e l d  s t r eng th ,  t h e  appl ied f i e l d  can be increased. However, t h i s  
is  t r u e  t o  a c e r t a i n  f i e l d  s t r eng th  where f u r t h e r  a rc ing  w i l l  i n  f a c t  
decrease the  achievable f i e l d .  
during the  arcing process i t s e l f .  
f i r s t  clear the  capac i tor  t o  the  f i e l d  s t r eng th  where f u r t h e r  arcing had 
l i t t l e  e f f e c t  on t h e  a b i l i t y  t o  achieve higher f i e l d s .  The da ta  ind ica t e  
a decrease i n  arcing vol tage  with increasing temperature. However, t he re  
i s  s t i l l  a tendency f o r  t h e  arcing vol tage t o  increase  as a r e s u l t  of 
previous arcing h i s to ry .  This is shown by a second set of da ta  i n  Table I V  
f o r  t he  sample used f o r  Table 111. 
w e l l  understood and f u r t h e r  i nves t iga t ion  should be conducted. 

p re fe r  the  arcing vol tage  t o  be near l o 6  V/cm f o r  f r e sh ly  prepared 
samples.  
capaci tor  de tec tor  t o  in su re  r e l i a b l e  operation. 

and leakage cur ren ts  which depend not  only on temperature 2 

More realist ic d a t a  f o r  t h e  intended appl ica t ion  is the  a rc ing  

6 

Shown i n  Table I1 and Fig. 7 is t h e  a rc ing  

This i s  presumably due t o  defect  c rea t ion  
The technique used i n  Fig.  7 w a s  t o  

Present ly ,  t he  a rc ing  phenomena i s  not 
One would 

This would p e r m i t  a more v e r s a t i l e  b ias ing  capab i l i t y  f o r  t he  

Technique f o r  Clearing Defects i n  MOS S t ruc ture  

The na ture  of t h e  c lear ing  operat ion involves the  appl ica t ion  of a 
high f i e l d  r e s u l t i n g  i n  a cur ren t  densi ty  through the  defec t  region 
s u f f i c i e n t  t o  vaporize o r  burn-out t he  low f i e l d  s t r eng th  region. 
a l l  d i e l e c t r i c s  made a t  R T I  and those obtained commercially w e r e  c leared 

Almost 

6 t o  obta in  f i e l d  s t r eng ths  i n  excess of 10 V/cm. A few exceptions were 
0 

noted f o r  t h e  9500 A commercial oxides. 
t h a t  high f i e l d  s t r eng ths  f o r  f r e sh ly  prepared samples  can be  obtained. 
However, d e t a i l s  f o r  achieving t h i s  des i r ab le  f ea tu re  are not  known. 

These exceptions c e r t a i n l y  ind ica t e  

There were two methods employed during t h e  cont rac t  t o  clear the  
capaci tors :  The f i r s t  w a s  t o  mount t h e  wafer between a metal p l a t e  and 
a m e t a l  r ing.  Then power as supplied by a 110 v o l t  variac w a s  appl ied 
i n  one o r  two v o l t  increments s t a r t i n g  a t  about t h r e e  o r  four  vo l t s .  
The variac w a s  rap id ly  switched on, then off a t  each increment. 
i f  t h e  c l ea r ing  w a s  successfu l  a t  each vol tage,  t he  va r i ac  w a s  disconnected 
and dc r e s i s t ance  of t h e  capaci tor  checked with an electrometer.  There are 
two disadvantages wi th  t h i s  method. 

To see 

One, i f  a pinhole o r  f a u l t  occurs 
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Table I11 

Arcing of MOS S t ruc tu re  over a Range of Temperatures 

0 

Sample 7-25-68A 10,000 A Si02 
0 

1000 A A 1  

Temperature 

25OC 

300 O C 

20OOC 

1oooc 
25OC 

-50" C 
-loooc 
- 1 5 O O C  

25OC 

Capacitance 

.048865pF 

,048975pF 

049532pF 

.048861pF 

.048710pF 

.048600pF 

.048530pF 

,048475pF 

.048610pF 

Diss ipa t ion  Current 
Factor  a t  1V 

.0044 1.9 x 10 

.0056 2.25 x 

.0460 3.1 

.0169 4.2 x 

.0489 2.5 x 

,0134 

.0033 1.24 x lo-'' 

.0027 

.0104 8.62 x 

Current 
a t  50V Arcs 

5 x 10 240 V 

1.5 x lo-' 227 V 

1 x lo-'' 300 V 

2.9 x lo-' 278 V 

1.5 x 380 V 
1.5 x lo-'' 400 V 

6 x 440 V 

(amp) -7 

1.5 220 v 

7.3 250 v 
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Table I V  

Sample 

Arcing of MOS S t ruc tu re  over a Range of Temperatures 

(Repeat of Table 111) 

7- 25- 6 8 
0 

10,000 A Si02 
0 

1000 A A 1  

Diss ipa t ion  Current Current 
at 50V Arcs - Temper t u r e  C pacitance Factor  a t  1 V  

(amps) (amps 1 

25OC .048573pF .0081 5.2 x 2 x 10-l' 390 V 

3 O O O C  .048643pF 0020 1.4 x 10-l' 2.3 x loe8 370 V 

200 O c .048540pF .0031 2.4 x 1 x 365 V 

l 0 O 0 C  .048582pF .0052 4.5 x 8 x 10-l' 390 V 

25OC .048393pF .0245 6 x 2 x 10-l0 395 v 
-50 O C .048342pF .0051 4.7 10-l~ 2.2 10-l~ 400 v 
-100°C .048287pF .0032 4 x 440 V 

-150 O C .048219vF .0044 460 V 

25OC .048356pF .009 3 5 x 10-l' 380 V 
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under the  contact ing m e t a l  r ing ,  t h e  capaci tor  s h o r t s  t o  the  p l a t e  when 
an arc occurs. 
con t ro l l ab le  as i t  should be. 
accomplish the  c lear ing  operat ion should be used s ince  excess power w i l l  
cause more f a u l t s .  

Secondly, t h e  power appl ied t o  t h e  capac i tor  is  not  as 
The least poss ib le  power t h a t  w i l l  

The second method, designed t o  eliminate these  two disadvantages, 

The 575 Tektronix curve-tracer i s  used t o  burn- 
i s  as follows: a poin t  probe contact  i s  used, e i t h e r  a platinum w i r e  
o r  a gold bonded lead. 
out t he  f a u l t s .  The curve tracer allows good current-voltage control .  
The capac i tor  is  connected between co l l ec to r  and emitter terminals  of 
t he  curve tracer with t h e  emitter grounded. 
e i t h e r  plus  o r  minus. 
vol tage depending on p o l a r i t y ;  however, the  top e lec t rode  w a s  usua l ly  
chosen p o s i t i v e  which is t h e  severer  test. I n  use t h e  s i l i c o n  should 
be pos i t ive .  
Sometimes i f  a l a rge  area s h o r t  is  encountered, more cur ren t  i s  needed 
t o  c l e a r  and the  0-20 o r  0-200 v o l t s  range is  se lec ted .  The ho r i zon ta l  
scale is  se t  a t  10 V/cm and t h e  v e r t i c a l  s c a l e  set on .5 mA/cm. 
d i s s ipa t ion  l imi t ing  r e s i s t o r  i s  set  t o  100K. Voltage is  gradually 
appl ied t o  the peak v o l t  range pot. I f  the  capac i tor  is good, a s e m i -  
c i r c u l a r  trace is  seen; i f  i t  i s  r e s i s t i v e ,  a l i n e  i s  t raced.  A 
s t r a i g h t  hor izonta l  l i n e  ind ica t e s  an open c i r c u i t  o r  no contact .  

The p o l a r i t y  switch can be 
There i s  sometimes. a d i f fe rence  i n  breakdown 

The range vol tage  switch is  set t o  0-400 v o l t s .  

The 

The procedure t o  burn-out a f a u l t  on the  curve t r a c e r  i s  as follows: 

1. S e t  hor izonta l  scale t o  10 V/cm. 
2. Se t  v e r t i c a l  scale t o  .5 mA/cm. 
3 .  
4. 

5. I f  a semi-circular trace is  not observed, r e tu rn  vol tage t o  

Dissipat ion l imi t ing  r e s i s t o r  t o  100K. 
Increase vol tage  from 0 t o  a value high enough t o  observe 
the  s ta te  of t h e  capaci tor .  

zero and decrease d i s s ipa t ion  l imi t ing  r e s i s t o r  and increase  
v e r t i c a l  cur ren t  scale. 

6 .  Increase vol tage  again.  
7. Continue s t e p s  5 and 6 u n t i l  a r c  occurs. 
8. Capacitor has  then been c leared  of a t  least one f a u l t .  

Experience has shown t h a t  many capac i tors  can be c leared  of f a u l t s  

Careful observation w i l l  up t o  vol tages  of approximately 4 x lo6  V/cm. 
i nd ica t e  t h a t  f o r  each arc encountered the  vol tage o r  f i e l d  s t r eng th  
can be increased s l i g h t l y ,  up t o  a poin t .  A t  some po in t ,  f u r t h e r  
a rc ing  o r  c lear ing  w i l l  not  increase  t h e  u l t imate  f i e l d  s t r eng th ;  i n  
f a c t ,  i t  w i l l  decrease. 

Almost a l l  capac i tors  could be c leared  by t h e  second method 
regardless  of t h e i r  o r i g i n a l  condition, whereas the  y i e ld  by the  f i r s t  
method w a s  low. 
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Li fe  T e s t  

The process of c l ea r ing  a MOS s t r u c t u r e  t o  achieve high f i e l d  
s t r eng th  must be se r ious ly  examined i f  used i n  the  f ab r i ca t ion  of capacitor- 
type de tec tors .  Arcing is  observed during the  breakdown of most d i e l e c t r i c s  
over a wide range of thicknesses.  
by t h e  s m a l l  range of vol tages  usua l ly  encountered f o r  operat ion.  

2000 A f i lms a 20 v o l t  b i a s  r e s u l t s  i n  a f i e l d  of 10 
r a the r  high f i e l d .  
f o r  b ias ing  the  capacitor-type de tec tor .  
compressed compared t o  1 / 4  m i l  Mylar capaci tors  where 600 v o l t s  is  

required f o r  a f i e l d  of 10 Arcing a t  600 v o l t s  f o r  1 / 4  m i l  Mylar 
capaci tors  would create few problems f o r  obtaining an operat ive de t ec to r .  
However, f o r  t he  t h i n  f i l m  capac i tor ,  l i f e  tests designed t o  gain confi-  
dence i n  the  a b i l i t y  of t he  de tec tor  t o  withstand the  b i a s  required f o r  
r e l i a b l e  operat ion should be a necessary p a r t  of f l i g h t  qua l i f i ca t ion .  
To pursue the  matter fu r the r ,  two preliminary tests were conducted under 
t h i s  cont rac t .  

For t h i n  f i lms t h e  e f f e c t  is  amplified 

V/cm which i s  a 

For 

One usual ly  thinks of vol tages  i n  excess of 1 v o l t  

0 6 

Therefore, t he  range of b i a s  is  

6 V/cm. 

0 

A 2000 A oxide capac i tor  w a s  placed i n  a holder  with 20 v o l t s  across  
i t  t o  determine i f  any a rc s  would occur during a long l i f e  test. 
a one month period, no devia t ion  occurred on the  char t  paper t h a t  could 
be d e f i n i t e l y  a t t r i b u t e d  t o  arcing.  Three s m a l l  deviat ions did occur 
about eighteen days a f t e r  t h e  beginning of t he  run. These did not have 
the same shape and amplitude as t e s t i n g  a rcs .  
low frequency noise  environment such as induction motor s tar t -up are 
l i k e l y  explanations.  

Over 

Power l i n e  f l u c t u a t i o n  o r  

Af te r  one month a t  20 v o l t s ,  t he  vol tage w a s  increased t o  35 v o l t s .  
Here arcing occurred rout ine ly  a t  about 5 minute i n t e r v a l s .  Therefore, 
t he  vol tage  w a s  decreased t o  30 v o l t s  where one arc occurred i n  a seven 
day period and t h a t  during the  f i r s t  hours of operation. 
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SECTION I V  

CONCLUSIONS AND RECOMMENDATIONS 

The conclusions of t h i s  cont rac t  are t h a t  capac i tors  made of 
thermally grown s i l i c o n  oxide c o n s t i t u t e  a s a t i s f a c t o r y  capac i tor  
e l e c t r i c a l l y  t o  perform t h e  micrometeoroid de tec t ion  funct ion.  
parameters of t h e  capac i tor - -d ie lec t r ic  constant ,  d i s s i p a t i o n  f a c t o r ,  
d i e l e c t r i c  breakdown strength--do not vary appreciably over t h e  temper- 
a t u r e  range of - 1 O O O C  t o  300OC; t h a t  is ,  they do not  vary appreciably 
enough t o  adversely inf luence  t h e  performance of t h e  capac i tor  i n  the  
micrometeoroid de t ec t ion  r o l e .  Cer ta in ly ,  they do exh ib i t  v a r i a t i o n s  
with temperature; these  have been measured and presented i n  t h i s  repor t .  

The 

Assuming t h a t  t h e  capac i tors  do s a t i s f a c t o r i l y  perform t h e  des i red  
micrometeoroid measurement, o the r  recommendations are: 

(1) The minimum oxide thickness  inves t iga ted  i n  the  course of 
0 

t h i s  cont rac t  w a s  2000 A. Yield a t  t h i s  thickness  w a s  not  as g r e a t  as 

t h a t  of t he  10,000 A oxides and t h e  number of de fec t s  t h a t  had t o  be 
burned-out w a s  g rea t e r .  
technique dependent. Oxides grown on sur faces  prepared by t h e  a l k a l i  
ion  e t ch  general ly  performed b e t t e r  i n  both respec ts  (y i e ld  and burn- 
out d e n s i t i e s )  than d id  those prepared e i t h e r  by chemical cleaning 
o r  by the  cupr ic  i on  technique, a l s o  designed t o  e l imina te  aluminum 
oxide p a r t i c l e s  (Ref. 19) .  A b r i e f  i nves t iga t ion  of thinner  d i e l e g t r i c s  
w a s  made and i n  general  y i e l d s  continued t o  decreas u n t i l ,  at  500 A oxide,  
t he  y i e l d  w a s  zero. There is  no reason t o  be l ieve  t h a t  t h i s  is  a funda- 
mental l i m i t a t i o n  although it  does represent  t he  present  state-of-the-art ,  
as f a r  as R T I  is concerned. The survey of t he  l i t e r a t u r e  ind ica t e s  t h a t  
very l i t t l e  work has been published on the  techniques f o r  improving the  
defec t  dens i ty  of l a r g e  area thermal oxides while a g rea t  d e a l  of informa- 
t i o n  has been published on methods f o r  reducing ions and electrical 
contaminants i n  the  oxide. 
i nves t iga t ion  of techniques f o r  preparing and growing oxides with reduced 
defec ts  f o r  t he  purpose of making l a r g e  area MOS capac i tors .  

0 

The y i e l d  and defec t  dens i ty  were c l e a r l y  

A higher  y i e l d  w i l l  probably r e s u l t  from an 

(2) The c lear ing  phenomena r e fe r r ed  t o  throughout t he  r epor t  is 
c lose ly  r e l a t e d  t o  y i e ld .  Processes which gave h igher  y i e l d s  invar iab ly  
r e su l t ed  i n  fewer de fec t s  t h a t  required c lear ing .  The number of defec ts  
a l s o  var ied  inverse ly  with oxide thickness.  Consequently, most of t he  

2000 A oxides had t o  be c leared  before  reaching what might be  assumed t o  

be operat ing f i e l d  s t r eng th  (10 V/cm o r  g rea t e r ) .  The s a m e  w a s  t r u e  

0 

6 
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f o r  some of t he  10,000 A oxides although many of these  u n i t s  required no 
burn-out a t  a l l  before  reaching these  high f i e l d  s t rengths .  The i n i t i a l  
w e t  chemical cleaning process involving n e i t h e r  t he  a l k a l i  ion  e t ch  o r  
the  cupric  ion  e tch  r e su l t ed  i n  100% of the  wafers requir ing burn-out. 
Toward t h e  end of the  cont rac t ,  both the  cupr ic  ion  and the  a l k a l i  ion  
e t ch  r e su l t ed  i n  more wafers exhib i t ing  no observable defec ts  u n t i l  

f i e l d  s t r eng ths  i n  excess of 10 
came from the  a l k a l i  ion  e t ch  process than with t h e  cupr ic  ion  etch.  
Further work t o  improve t h i s  technique seems worthwhile i f  these  capac i tors  
are t o  be flown i n  space. 

6 w e r e  reached. Better r e s u l t s  general ly  

(3) Packaging of t he  capac i tor  has been l a rge ly  a r b i t r a r y .  Most 
of t he  samples  examined under t h i s  cont rac t  were spr ing  mounted i n  holders  
held down from the  top. 
of e i t h e r  type of mounting t o  impac t  from a high ve loc i ty  par t ic le  must 
be assessed f o r  f u t u r e  housing designs.  

A few were bonded with epoxy cement. The response 

( 4 )  The r o l e  of breakdown, e i t h e r  e l e c t r i c a l l y  i n i t i a t e d  or  mech- 
an ica l ly  i n i t i a t e d ,  is  s t i l l  unclear.  Consequently, t he  capaci tors  being 
fabr ica ted  f o r  t he  micrometeoroid de tec t ion  are based s o l e l y  on e m p i r i c a l  
considerat ions.  A fundamental study of t he  physics and mechanics of 
mechanically i n i t i a t e d  breakdown could cont r ibu te  much t o  the  thoughtful 
design of f u t u r e  capaci tors .  A t  present ,  t he  r o l e  of many va r i ab le s  is 
simply not  known; i .e. ,  top e lec t rode  composition and thickness,  s u b s t r a t e  
thickness ,  s u b s t r a t e  mounting, d i e l e c t r i c  mechanical proper t ies  (amorphous 
versus c r y s t a l l i n e ) ,  e t c .  

( 5 )  Simi lar ly ,  t h e  physics of impact  and f r a c t u r e  are not w e l l  
understood. Inves t iga t ion  of t h e  responses of c r y s t a l l i n e  and amorphous 
subs t r a t e s  t o  high ve loc i ty  impacts would furn ish  usefu l  information f o r  
fu tu re  capac i tor  designs.  

Of t h e  various materials now being used t o  form t h i n  f i l m  d i e l e c t r i c s  
i n  microelectronic  capac i tors ,  t he  thermal growth of s i l i c o n  oxide on 
s i l i c o n  seems as s u i t a b l e  as any f o r  use as a micrometeoroid capaci tor .  
Should t h i s  s t r u c t u r e  prove unsa t i s fac tory ,  the  most promising o ther  
material i s  perhaps t h e  polymer f i lm  poly-p-xylylene 
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APPENDIX 1 

REVIEW OF TECHNIQUES FOR FABRICATING THE 

DIELECTRIC OF A THIN FILM CAPACITOR 

This appendix gives  a b r i e f  state-of-the-art  review of the  var ious 
s o l i d  state technologies t h a t  might be capable of manufacturing capac i tors  

with d i e l e c t r i c  thicknesses i n  the  1000 - 10,000 A range. This range of 
thickness i s  t h a t  usua l ly  assoc ia ted  with t h i n  f i l m  technology. 
techniques e x i s t  f o r  deposi t ing o r  growing t h i n  f i lms .  The most promising 
of the  technologies w i l l  be  b r i e f l y  described i n  p r i n c i p l e  and some of the  
r e s u l t s  t h a t  might be obtained using these  techniques are summarized. 
b r i e f  evaluat ion of t he  s u i t a b i l i t y  of each technology f o r  bu i ld ing  t h e  
type of capaci tor  sought f o r  micrometeoroid de tec t ion  i s  made and an 
estimate of t h e  p o t e n t i a l  f o r  f u t u r e  development is also included. 

0 

Many 

A 

Most p r a c t i c a l  methods f o r  bui lding t h i n  f i l m  capac i tors  cons i s t  of 
deposi t ing an i n s u l a t o r  upon a conducting s u b s t r a t e  which makes up one 
e lec t rode  of t he  capaci tor .  The second e lec t rode  is  deposited on the  
opposite s i d e  of t he  i n s u l a t o r  t o  make up the  f in i shed  capaci tor .  
t h i n  f i l m  thickness  range, t h e  most common deposi t ion technique has been 
evaporation, spu t t e r ing ,  o r  o ther  vacuum dependent process.  Many use fu l  
capac i tors  have been and are s t i l l  being made by these  techniques; 
however, t h e i r  f ab r i ca t ion  is  highly technique dependent because of t h e  
many va r i ab le s  associated with a vacuum deposi t ion process. 
and e f f o r t  has a l ready been devoted by the  industry t o  developing and 
optimizing these processes.  Consequently, t he  present  state-of-the-art  
i s  not one t h a t  i s  l i k e l y  t o  be changed dramatical ly  by f u r t h e r  research 
and/or development. 

I n  the  

Much t i m e  

A second general  c l a s s  of techniques f o r  bui lding t h i n  f i l m  
capac i tors  cons is t s  of converting t h e  sur face  l aye r s  of a m e t a l  o r  
semiconductor i n t o  an oxide d i e l e c t r i c .  I n  t h i s  s t r u c t u r e ,  t h e  o r i g i n a l  
metal serves as one electrode.  The oxide formed by the  oxidat ion 
process is t h e  capac i tor  d i e l e c t r i c  and a second m e t a l  e lec t rode  is 
deposited on top of t he  oxide t o  f i n i s h  the  capac i tor  s t ruc tu re .  
thermal oxidat ion of s i l i c o n  is  an example of t h i s  method as i s  t h e  
anodization of aluminum, tantalum, and o ther  metals. The general  advan- 
tage of t h i s  type technique over the  s t r a i g h t  deposi t ion process i s  t h a t  
t he  s t a r t i n g  s u b s t r a t e  p a r t i c i p a t e s  i n  t h e  d i e l e c t r i c  formation and 
hence small var i a t ions  o r  non-uniformities i n  the  subs t r a t e  sur face  can 
be healed o r  accommodated f o r  i n  the  formation of t h e  d i e l e c t r i c .  A 
rough s t a r t i n g  s u b s t r a t e  does not  necessar i ly  guarantee a poor capaci tor .  
On the  o ther  hand, t h e  composition of t h e  d i e l e c t r i c  w i l l  be dependent 
on t h e  s u b s t r a t e  c leanl iness  and c e r t a i n  imperfections o r  impur i t ies  on 
the  sur face  being oxidized can create defec ts  o r  imperfections i n  the  
r e s u l t a n t  oxide. 

The 
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Building t h i n  f i l m  capac i tors  with d i e l e c t r i c s  composed of polymers 
o r  o the r  p l a s t i c s  c o n s t i t u t e s  a t h i r d  general  f a b r i c a t i o n  technique. 
This technique i s  newer than the  o thers  
have already appeared i n  the  l i t e r a t u r e .  

been described i n  the  200 A and lower region by using t h i s  method. 
Because of i ts  r e l a t i v e  newness, evaluat ion of these  techniques 
f o r  the  micrometeoroid capac i tor  program are more t en ta t ive .  

performance claims 
e d i e l e c t r i c s  have 

0 

Vacuum Deposit ion Techniques 

Vacuum deposi t ion techniques are divided i n t o  two general  categories:  
1) thermal vaporizat ion,  and 2) i on  bombardment. Within these  two broad 
ca tegor ies  many va r i a t ions  e x i s t ,  the  most important of which w i l l  be 
discussed i n  the  following paragraphs. 

Vacuum Evaporation by Thermal Vaporization. - This technique is  t h e  
most common vacuum deposi t ion technique i n  use; i t  has been used f o r  t he  
longest  t i m e  as w e l l .  The p r inc ip l e s  of operat ion are q u i t e  simple: a 
material heated i n  vacuum t o  bo i l ing  w i l l  spew f o r t h  i t s  cons t i tuent  
atoms which then proceed i n  a s t r a i g h t  l i n e  path t o  deposi t  on t h e  f i r s t  
sur faces  in te rcept ing  the  atom's l i n e  of s i g h t ,  providing t h e  vacuum is 
low enough t h a t  t he  mean f r e e  path between atomic c o l l i s i o n s  is  l a r g e  
with respect  t o  t h e  chamber dimensions. The commonly used hea t  sources 
are tungsten f i laments  through which l a rge  cur ren ts  are passed. The 
f i laments  become hot  through r e s i s t ance  heat ing and any material i n  
contact  with the  hot  f i lament  is a l s o  heated and can be boi led  of f  as 
described. This technique is q u i t e  s u i t a b l e  f o r  m e t a l s  such as gold,  
aluminum, s i l v e r ,  and a l a rge  hos t  of materials with r e l a t i v e l y  low 
bo i l ing  temperatures (under 15OO0C). Some d i e l e c t r i c s  are a l s o  deposited 
by t h i s  technique, t he  most common of which is probably s i l i c o n  monoxide. 
The source material f o r  s i l i c o n  monoxide is  usual ly  a f i n e  brown powder 
o r  chunks of a material with e s s e n t i a l l y  the  stoichiometry of SiO. 
Prec ise  composition of t h e  s t a r t i n g  sources is general ly  somewhat i n  
doubt. Spectrographic ana lys i s  i nd ica t e s  t h a t  t he  same absorpt ion 
proper t ies  are exhibi ted by f i n e l y  divided mixtures of s i l i c o n  and 
s i l i c o n  dioxide as are exhibi ted by t h e  commercially ava i l ab le  powders 
so ld  under the  name s i l i c o n  monoxide. 
t he  growth of s i l i c o n  oxide f i lms  formed by the  evaporation of t h i s  
s i l i c o n  monoxide powder. Heating rates, r e s idua l  pressure i n  the  vacuum 
chamber, and source composition a l l  inf luence t h e  e l e c t r i c a l  p roper t ies  
of t he  r e s u l t a n t  f i lm.  I n  addi t ion ,  small p a r t i c l e s  of s o l i d  matter 
can be spewed f o r t h  from t h e  hot  mixture and form gross p a r t i c l e s  i n  the  
growing f i lm.  These l a r g e  chunks of material t h a t  are deposited are 
refer red  t o  as meteors and s p e c i a l l y  designed evaporation boats  have 

Technique is  highly important i n  

e l iminate  them from t h e  deposited f i lm.  

Films of s i l i c o n  monoxide evaporated from a hot  tungsten f i lament  
are probably among t h e  more common d i e l e c t r i c s  used t o  make capaci tors .  
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The d i e l e c t r i c  constant  of f i lms made i n  the  1000 t o  
range is  on t h e  order  of 5 t o  6. 

t he  order  of 2 t o  4 X l o 6  V/cm. 

a defec t  o r  pinhole densi ty .  

f i e l d  s t r eng ths  of 1 t o  5 x 10 V / c m  (Ref. 1). By using t h i n  e lec t rodes  
these  i n i t i a l  defect-related breakdown events are general ly  s e l f  heal ing-  

In general ,  these  f i lms can be deposited down t o  1000 t o  2000 A i n  
thickness  with y i e l d s  t h a t  would seem t o  be acceptable  f o r  micrometeoroid 
de tec tors .  "Burn-out" phenomena occur in t h a t  de fec t s  and weak spots  
must be el iminated by a "clearing" operation. 
appl ica t ions ,  not necessar i ly  micrometeoroid sensors ,  would be changes of 
proper t ies  with temperature. Operating s i l i c o n  monoxide capac i tors  a t  
200 t o  300OC general ly  causes d r i f t  i n  the  capacitance of t h e  u n i t  and 
changes t h e  d i s s ipa t ion  f a c t o r  by a g r e a t e r  magnitude than comparable 
capac i tors  b u i l t  wi th  thermally grown s i l i c o n  dioxide d i e l e c t r i c .  

Breakdown vol tage  

A s  is general  f o r  t h  
down vol tage  is not  a t r u e  bulk breakdown phenomena b f 

Breakdown events gener 
5 

0 

A se r ious  problem i n  some 

Other thermally vaporized materials can a l s o  be used as t h e  d i e l e c t r i c  
of a t h i n  f i l m  capac i tor .  
lanthum f luo r ide ,  cerium f luo r ide ,  cerium dioxide and zinc s u l f i d e  
(Ref. 2) .  Magnesium f l u o r i d e  is  p a r t i c u l a r l y  recommended because of i t s  

Common d i e l e c t r i c s  include magnesium f luo r ide ,  

6 d i e l e c t r i c  constant  of 6.5 and i ts  d i e l e c t r i c  s t r eng th  of 2.2 X 10 V/cm. 

The oxides of rare e a r t h  and t r a n s i t i o n  metals have been used t o  
make capac i tors  (Ref. 3 ) .  These materials are s u i t a b l e  but  possess no 
major advantage over s i l i c o n  monoxide o r  magnesium f luo r ide .  They are 
less fami l i a r  and do not  warrant f u r t h e r  considerat ion i n  bui lding micro- 
meteoroid capaci tors  a t  present .  

A l l  t he  materials discussed so f a r  can be deposited with an 
e l ec t ron  gun hea te r  ins tead  of t h e  r e s i s t ance  hea te r  t h a t  has been i n  
use f o r  t he  p a s t  20 years .  In general ,  f i l m  p rope r t i e s  are comparable 
between t h e  two methods, although some evidence suggests an e l ec t ron  gun 
deposi ts  a higher  dens i ty  f i lm  and one with higher  d i e l e c t r i c  constant  
(Ref. 4 ) .  
from using t h e  e l ec t ron  gun. Electron gun heat ing of source material 
does make poss ib le  d i r e c t  thermal evaporation of many i n s u l a t o r s  such 
as syn the t i c  quar tz ,  sapphire ,  and o the r s  (Ref. 5). The d i e l e c t r i c s  
produced by these  means are comparable t o  those produced by t h e  o ther  
techniques and i n  general  no advantage o r  disadvantage accompanies 
t h i s  method. 

No major advantage seems t o  accrue o the r  than c leanl iness  

. - Sputter ing is  a vacuum deposi t ion process i n  which 
the  
ions.  

i a l  i s  vaporized because of bombardment by high energy 
The ions acqui re  high energy by acce le ra t ion  i n  an electric 

e x i s t i n g  between two e lec t rodes ,  normally operat ing i n  t h e  
o l t  p o t e n t i a l  d i f fe rence  range. 
ese two e lec t rodes  acce lera t ing  t h e  ions t h a t  e x i s t  between them 

Diode spu t t e r ing  cons i s t s  simply 
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-2 i n  a system evacuated t o  the  10 t o r r  pressure r e 
process can be improved by adding i r d  terminal  whose f 
simply t o  i n j e c t  e l ec t rons  i n t o  t h  amber. The add 

n- inject ing e lec t rode  permits s ng t o  take place 
e pressures .  The added e l ec t rode  converts t h e  diode s 

process i n t o  t h e  t r i o d e  spu t t e r ing  system. The material t o  b 
i s  general ly  one e lec t rode  of t h e  system ( the  negat ively biased e lec t rode)  
and the  spu t t e r ing  ac t ion  depends upon the  impac t  of high energy ion  
upon it .  I f  t h e  material i s  an i n s u l a t o r  a space charge bu i lds  up on 
the  sur face  of t h i s  e lec t rode  a f t e r  a very sho r t  period (because of t he  
pos i t i ve ly  charged ions impacting on i t ) ,  reducing the  energy and number 
of subsequent impacts .  This s u b s t a n t i a l l y  ends the  spu t t e r ing  cycle.  
To prevent t h i s  ac t ion ,  a method of b ias ing  t h e  e lec t rode  with an RF 
p o t e n t i a l  has been developed which permi ts  t he  space charge t o  be 
neut ra l ized  on a l t e r n a t e  half-cycles.  This i s  t h e  RF spu t t e r ing  
modification. I n  any of these  systems--diode, t r i o d e ,  o r  RF sputtering-- 
t he  r e s idua l  gas composition and pressure  can be cont ro l led  t o  cause 
f u r t h e r  modification i n  t h e  na ture  of t h e  deposited f i lm.  For example, 
if s i l i c o n  i s  sput te red  i n  an oxygen atmosphere the  composition of the  
r e s u l t a n t  f i l m  can be e i t h e r  s i l i c o n  oxide or s i l i c o n  dioxide depending 
on the  spu t t e r ing  rate and the  r e s idua l  gas pressure.  
material i s  d i f f e r e n t  from t h e  source material because of a modifying 
reac t ion  occurring during t h e  spu t t e r ing ,  the  process i s  c l a s s i f i e d  as 
a r eac t ive  sput te r ing .  
incorporat ion of a l l  these  f ea tu res  i n t o  a s i n g l e  system; t h a t  is, a 
s i n g l e  b e l l  jar  and pumping system can do e i t h e r  diode, t r i ode ,  o r  RF 
spu t t e r ing  which is  i t s e l f  e i t h e r  r eac t ive  o r  nonreactive depending on 
the  rates and r e s idua l  gas composition se lec ted .  

When the  f i l m  

Commercial vacuum systems now make poss ib le  the  

S i l i con  oxide f i lms  deposited by t h e  r eac t ive  spu t t e r ing  process 
are typ ica l ly  more l i k e  t h i n  f i lms of thermal s i l i c o n  dioxide than 
evaporated f i lms of s i l i c o n  monoxide. The d i s s ipa t ion  f a c t o r  and 
d i e l e c t r i c  constant  t yp ica l ly  are c lose  t o  t h a t  of amorphous bulk 
s i l i c o n  dioxide (Refs . 6-8). 

Conclusions. - Vacuum deposi t ion of inorganic  in su la t ing  f i lms  is  
highly developed f o r  producing in su la t ing  layers  and capaci tor  d i e l e c t r i c s  
i n  contemporary microelectronics .  
r e l a t i v e l y  s m a l l  areas, compatible with the  dimensions of microelectronics ,  
and hence are not d i r e c t l y  assessable  i n  terms of a l a r g e  area micro- 
meteoroid de tec t ing  capaci tor .  
deposited d i e l e c t r i c  t h i n  f i lms  are defec ts  o r  pinholes i n  the  d i e l e c t r i c  
l aye r  which cause loca l ized  regions of poor performance and r e s u l t  i n  
low breakdowns. Many of these  low breakdowns can be healed by passing 
l a rge  cur ren ts  through t h e  region and vaporizing the  surrounding metal 
and d i e l e c t r i c .  This ac t ion  is probably very similar t o  the  discharge 
accompanying micrometeoroid impact. It i s  ab le  t o  dis- 

These uses are general ly  confined t o  

The common shortcomings of vacuum 

en t h e  two events and iminate a l l  such 
t o  using such a capac i d  capac i tor  , 
i l i t y  t o  perform t h i  t i o n  does suggest 
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t h a t  t he  p a r t i c u l a r  capaci tor  under test would be s u i t a b l e  as the  
meteoroid counter as w e l l .  

Techniques f o r  vacuum deposi t ing t h i n  f i lms  have been under develop- 
ment f o r  a long t i m e .  Subs t ra te  preparat ion is unquestionably very 
important i n  f i lm  prepara t ion  as are t h e  many va r i ab le s  t h a t  descr ibe a 
p a r t i c u l a r  deposi t ion process. 
could probably be constructed from a paral le l  a r r ay  of many small iden- 
t i c a l  capac i tors ,  each of which w a s  p rese lec ted  from a much l a r g e r  
quant i ty  i n i t i a l l y  fabr ica ted .  
ava i l ab le  with present  technology. 

A s a t i s f a c t o r y  micrometeoroid de tec tor  

This so lu t ion  i s  not  t h e  b e s t  s o l u t i o n  

Vapor Deposition Techniques 

Vapor deposi t ion descr ibes  t h e  genera l  class of f i lm  formation 
techniques i n  which the f i lm  i s  formed by a decomposition, oxidat ion,  o r  
o ther  chemical reac t ion .  The advantages of t h i s  process are t h a t  i t  re- 
qui res  no expensive vacuum equipment t o  maintain and operate.  It can be 
ca r r i ed  out  i n  r e l a t i v e l y  simple every day laboratory apparatus. I n  
s i l i c o n  technology, t he  q u a l i t y  of vapor deposited s i l i c o n  oxide f i lms 
have proven super ior  f o r  many appl ica t ions  than similar f i lms  formed by 
vacuum evaporation. 

While vapor deposi t ion has been used f o r  over ha l f  a century t o  
form various types of r e f r ac to ry  metal coatings such as carbide,  n i t r i d e ,  
borides  and s i l i c i d e s ,  t he  most common use of vapor deposi t ion a t  present  
i s  i n  t h e  growth of high q u a l i t y  s i l i c o n  e p i t a x i a l  l ayers .  
are not  u se fu l  f o r  d i e l e c t r i c s  bu t  t he  techniques t h a t  have been perfected 
over t he  p a s t  t en  years  t o  grow such s i l i c o n  l aye r s  have been extended t o  
form s i l i c o n  oxide layers .  Two common methods f o r  deposi t ing s i l i c o n  
oxide are as follows: (1) the  thermal oxidat ion of s i l a n e  (Ref. 9 ) ,  
and (2) t h e  py ro ly t i c  decomposition of t e t r a e t h y l o r t h o s i l i c a t e  (Refs. 
10-12), The r eac t ion  between s i l a n e  (SiH ) and oxygen occurs a t  low 

rates even a t  room temperature. For uniform high q u a l i t y  l aye r s ,  t he  
r eac t ion  is general ly  ca r r i ed  out  i n  t h e  v i c i n i t y  of 300 t o  400°C. 
thermal decomposition of t e t r a e t h y l o r t h o s i l i c a t e  on t h e  o ther  hand re- 
qui res  a temperature i n  the  700 t o  1000°C range. I n  both cases, the  
reac t ing  gases  are mixed i n  t h e  v i c i n i t y  of a heated s u b s t r a t e  which 
catalyzes  t h e  reac t ion .  Glow discharges have a l s o  been employed t o  
car ry  out  e s s e n t i a l l y  t h e  same type of reac t ion  (Ref. 10).  

Such layers  

4 

The 

The proper t ies  of these  f i lms are similar i n  general  q u a l i t y  t o  
those formed by vacuum deposi t ion.  

t r ic  thicknesses less than 500 A have been f ab r i ca t ed  successfu l ly  
(Ref. 10). Breakdown f i e l d  s t r eng th ,  d i s s ipa t ion  f a c t o r  and d i e l e c t r i c  
constant  are s i m i l a r  t o  t h a t  of thermally grown S i 0  Consequently, 

t h i s  source of d i e l e c t r i c  f i l m  formation i s  s u i t a b l e  f o r  t he  MOS capac i tor  
fabr ica t ion .  
To cover l a rge  areas uniformly requi res  not  only good temperature con t ro l  

High qua l i ty  capac i tors  with dielec-  
0 

2' 

Uniformity of depos i t  i s  an ever present  problem, however. 
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but  good con t ro l  of the  gas flows from which the  oxide i s  deposited.  A s  
before,  the  f i l m  qua l i ty  i s  dependent upon the  s u b s t r a t e  preparat ion and 
cleanliness. 

Polymer Dielectric Films 

Polymer t h i n  f i lms  are prepared i n  a manner very similar t o  the  
inorganic vapor deposited f i lms j u s t  described. One major d i f fe rence  is 
t h a t  t he  f i l m  i t s e l f  is  a polymer and t h a t  t he  r eac t ion  used t o  form it 
must involve a polymerization as w e l l  as a simple decomposition o r  chem- 
ical  react ion.  
d i e l e c t r i c s  is  t h e i r  low re s idua l  stress. These f i lms are ab le  t o  flow 
p l a s t i c a l l y  under stress and capac i tors  made from them withstand stresses 
t h a t  crack o r  s h a t t e r  t he  inorganic  d i e l e c t r i c s  and oxides previously 
discussed. Thin polymer f i l m s  have been prepared t o  thicknesses as 

s m a l l  as 100 A and i n  general  exh ib i t  low electrical conductivity,  a 
small d i s s ipa t ion  f ac to r ,  and a high d i e l e c t r i c  breakdown s t rength .  
Their primary disadvantage i s  t h e i r  r e l a t i v e  i n s t a b i l i t y ,  both with 
respect  t o  temperature and t o  c e r t a i n  chemical ambients. Most polymer 
f i lms must operate  a t  temperatures below 150OC; most f i lms are a f f ec t ed  
by exposure t o  water p a r t i c u l a r l y  a t  high temperatures. 

The chief advantage of p l a s t i c  polymers as capac i tor  

0 

Formation of a p l a s t i c  polymer t h i n  f i l m  requi res  some methods of 
i n i t i a t i n g  polymerization. 
discharge and pyrolysis ,  although var ious photo- ini t ia ted reac t ions  
a l s o  are commonly used (Refs. 12-13). A whole hos t  of materials have 
been deposited by these  methods, including polystyrene,  polyethylene 
te rephtha la te ,  polytetrafluoroethylene, polycarbonate, photores i s t ,  
and collodion. Often, these  are self-supported f i lms  and are processed 
s o  as t o  b e  in se r t ed  between two aluminum f o i l s .  
methods, t he  minimum f i lm  thickness is  i n  the  range of .15 t o  1 m i l .  A 
notable exception is t h e  recent  polymeric t h i n  f i l m  developed by Union 
Carbide and marketed under the  name of Parylene. 
deposited from a gas phase of p-xylene vapor which impinges on a room 
temperature sur face  such as aluminum. The p-xylene polymerizes t o  form 
poly-p-xylylene. 
impressive. The most important is  t h a t  of pinhole free coatings i n  the  

50 t o  100 A range. Such f i lm  per fec t ion  implies a high s u i t a b i l i t y  f o r  
use as a l a rge  area capaci tor  t o  de t ec t  micrometeoroids. The o the r  
d i e l e c t r i c  proper t ies  of poly-p-xylylene are ce r t a in ly  s u i t a b l e  f o r  forming 
such a capaci tor .  

3 X 10 
the  d i s s ipa t ion  f a c t o r  is a l s o  very low (- 0.0001). The a b i l i t y  t o  
manufacture l a rge  shee t s  of this  type capaci tor  would seem t o  make i t  
highly s u i t a b l e  f o r  t he  micrometeoroid capac i tor  appl icat ion.  
could w e l l  prove super ior  t o  any of t he  inorganic  capac i tor  d i e l e c t r i c s .  
A chief drawback i s  i t s  newness and t h e  lack  of da t a  from t h e  f i e l d  t o  
judge its performance. 

Common techniques f o r  doing t h i s  are gaseous 

With such manufacturing 

These f i lms are 

The proper t ies  of t h e  deposited polymer are q u i t e  

0 

Its d i e l e c t r i c  s t r eng th  is on t h e  order  of 
6 

V/cm;  t he  d i e l e c t r i c  constant i s  low (on the  order  of 2.7), 

It 
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A 

t he  s u b s t r a t e  is placed i n  a 
which serves as the  r e se rvo i r  of oxygen ions.  
technique t h a t  i s  of most interest f o r  the  f o  t i o n  of high perfo 
capac i tors ,  t h e  w e t  e l e c t r o l y t i c  technique ha 
and shown t o  be  sub jec t  t o  the  usual  u n c e r t a i n t i  
such as pores and defec ts  t h a t  plague most t h i n  fi lms. 
za t ion  technique has not  become so  common as t o  have had the  contempt 
heaped upon it t h a t  such f a m i l i a r i t y  seems t o  breed i n  t h i n  f i lms.  Most 
r epor t s  concerning gaseous anodization are glowing repor t s ,  p ra i s ing  t h e  
high per fec t ion  and l ack  of defec ts  i n  comparison with the  w e t  e lec t ro-  
l y t i c  (Ref. 15). Among t h e  d i e l e c t r i c s  formed commonly i n  t h i s  manner 
are s i l i c o n  dioxide,  t i t an ium dioxide,  tantalum pentoxide. Probably 
the  most s t r i k i n g  r e s u l t s  are those claimed by M i l e s  and Smith f o r  t he  
gaseous anodizat ion of aluminum (Ref. 15). They claim e s s e n t i a l l y  

pinhole f r e e  f i lms  i n  t h e  100 t o  200 A thickness  range over areas of 

1 t o  2 cm . 
one continuous l a rge  capacitance electrode.  S i l i c a  deposi t ion has been 
developed by Ligenza (Ref. 16) and pursued f u r t h e r  by Kraitchman and 
Handy (Ref. 17) using s i l i c o n  as a s u b s t r a t e  f o r  t he  formation of anodized 
s i l i c o n  oxide. No claims f o r  unusually good per fec t ion  o r  defec t  f r e e  
f i l m s  w e r e  made by e i t h e r  of these  inves t iga tors .  The f i lms  were repre- 
sented as a convenient low temperature method f o r  deposi t ing s i l i c o n  
oxide. The d i e l e c t r i c  p rope r t i e s  and physical  p rope r t i e s  of these  f i lms  
s o  deposited are comparable t o  the thermally grown oxide which they w e r e  
designed t o  replace.  

i g h t  make the  uniform coat ing of a l a r g e  area 

er i n  t h e  v ic i  
It i s  pr imari ly  the  second 

The gaseous anodi- 

0 

2 These areas however are the  sum of many s m a l l  do ts  r a t h e r  than 

Indeed t h e  apparatus and t h e  design of t h e  e lec t rodes  

ion  is  t h a t  i t  
c f i l m  formed 

ged i n t o  a min 
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Thermal Oxidation of S i l i con  

The thermal oxidat ion of s i l i c o n  i s  a well-studied much performed tech- 
nique i n  s i l i c o n  technology (Ref. 18). 
s i l i c o n  wafers i n t o  an oxidizing atmosphere--either 100% oxygen o r  oxygen 
plus  steam--at a high temperature f o r  a cont ro l led  t i m e .  The f i l m  thick- 
ness is  propor t iona l  t o  t i m e  and temperature f o r  a given oxidizing 
atmosphere and is  reproducible t o  b e t t e r  than 5% over most of t h e  range 
of thicknesses used i n  s i l i c o n  technology. One of t h e  more recent  uses 
of s i l i c o n  oxide i n  s i l i c o n  technology i s  as t h e  g a t e  d i e l e c t r i c  of t he  
MOS f i e ld -e f f ec t  device. I n  t h i s  r o l e ,  t he  oxide is  grown approximately 

800 t o  1200 A th ick ,  i s  over coated with an aluminum e lec t rode  and then 

subjected t o  e l e c t r i c  f i e l d s  on the order  of 10 
These requirements are very similar t o  those encountered i n  the  micro- 
meteoroid capaci tor .  The one major d i f fe rence  is  t h a t  of area. The g a t e  

of t he  MOS f i e ld -e f f ec t  t r a n s i s t o r  may have an area of 10 cm , t h e  area 

of t he  micrometeoroid de t ec to r  requi res  an area of 10 c m  . This f a c t o r  

of 10 increase  i n  area does not  make the  task  10 more d i f f i c u l t .  It 
does p lace  a premium on being ab le  t o  grow oxides on s i l i c o n  t h a t  are 
a t  least the  present  s ta te-of- the-ar t .  

It cons i s t s  of placing highly polished 

0 

6 V/cm f o r  device operation. 

-3 2. 

3 2  

6 6 

I n  p r inc ip l e ,  any sur face  placed i n t o  t h e  furnace a t  a uniform 
temperature can be uniformly oxidized. Therefore, the  maximum area 
a t t a i n a b l e  i n  the  present  state-of-the-art  i s  a quest ion of t he  maximum 
practical s i z e  s i l i c o n  sur face  t h a t  can be prepared and in se r t ed  i n t o  
a furnace. I n  contemporary production, t h e  c i r c u l a r  wafer i s  i n  use; 
its maximum read i ly  ava i l ab le  diameter is  2 inches. However, t he re  i s  
no reason why one can ' t  go t o  a 6 t o  1 2  inch diameter d i s c  i f  t h e  need 
i s  important enough. 
growing t h i s  l a rge  a s u b s t r a t e  c r y s t a l ,  p a r t i c u l a r l y  i f  t he  requirement 
f o r  having t h e  e n t i r e  wafer a s i n g l e  wafer is  relaxed. 
meteoroid capaci.tor, t h i s  accommodation seems q u i t e  permissible.  N o  
added f a i l u r e  mode is an t i c ipa t ed  by switching from a s i n g l e  c r y s t a l  
t o  a po lyc rys t a l l i ne  subs t r a t e .  

There is  nothing fundamentally d i f f i c u l t  about 

For the  micro- 

Thermally grown s i l i c o n  oxide has not been overly popular as a 
d i e l e c t r i c  f o r  a capac i tor  i n  in t eg ra t ed  c i r c u i t s  o r  o ther  s i l i c o n  
devices, pr imari ly  because of i t s  r a t h e r  low d i e l e c t r i c  constant .  To 
bui ld  a capac i tor  ou t  of s i l i c o n  oxide requi res  an inord ina te ly  l a rge  
area. Ofttimes the  preferab le  course i n  construct ing an e l e c t r o n i c  
funct ion i s  t o  simply append an ex te rna l  capaci tor  t o  the  active 
components and fo rge t  about i n t eg ra t ion .  
money developing high d i e l e c t r i c  constant  d i e l e c t r i c s  such as the  tantalum 
oxides and t i tanium oxides previously mentioned. 
appl ica t ion ,  however, t he  low d i e l e c t r i c  constant i s  of no consequence. 
The proper t ies  most sought a f t e r  are t h e  a b i l i t y  t o  f a b r i c a t e  a capaci tor  
with a t h i n  d i e l e c t r i c ,  which w i l l  not s h o r t  ou t  upon i n i t i a l  f ab r i ca t ion  
and which w i l l  r e t a i n  t h e  self-heal ing proper t ies  exhibi ted by Mylar 

People have spent t i m e  and 

For the  micrometeoroid 

32 



and o the r  t h i ck  f i l m  capac i tors  upon impact  by a hard,  high energy 
objec t .  
exh ib i t  a high d i e l e c t r i c  s t r eng th .  On a l l  these  scores ,  thermally 
grown s i l i c o n  oxide comes off q u i t e  w e l l .  
ab l e  on i ts  response t o  high ve loc i ty  p a r t i c l e  impact bu t  from laboratory 
s tud ie s  of over-voltage s i g n a l s ,  t he  self-heal ing ac t ion  would c e r t a i n l y  
seem t o  be reasonable t o  expect.  

In addi t ion ,  i t  would appear des i r ab le  t o  have the  d i e l e c t r i c s  

N o  information is y e t  avail- 
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Table A-1 

Proper t ies  of Various D i e l e c t r i c  Thin Films 

Max. DC Minimum 
Thickness D i e l e c t r i c  Diss ipa t ion  Factor Breakdown 

Constant (at 25OC unless  n 

Die lec t r i c s  ( a t  25OC) otherwise noted) (A) (vo l t s )  

Evaporated 
s i o  

Evaporated 
U F  

Si02 

(Thermal) 

Sputtered 
Si02 

Vapor 
Deposited 

Si02 

Pary lene  

Anodic 

Ta205 

5 t o  10 ,001 t o  .01 

6 t o  7 .001 t o  .01 

3.2 t o  3.8 < .001 

1.8 t o  3.4 - .001 

.01 ( a t  100°C 
4.5 t o  5.5 1 kc) 

.00015 (25OC 
2.7 1 kc) 

14 t o  28 .01 t o  .02 

500 t o  1000 3-4 x l o 6  

6 1000 2 x 10 

7 500 t o  1000 1-2 x 10 

6 1000 6-10 x 10 

6 500 5-10 x 10 

100 t o  1000 3.2 x lo6 

700 1 x lo6 
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